Stochastic detection and characterisation of individual ferrocene derivative tagged graphene nanoplatelets.

نویسندگان

  • Haoyu Wu
  • Qianqi Lin
  • Christopher Batchelor-McAuley
  • Luís Moreira Gonçalves
  • Carlos F R A C Lima
  • Richard G Compton
چکیده

Graphene nanoplatelets (GNPs) are 'tagged' with 1-(biphen-4-yl)ferrocene. Chronoamperometry is then utilised to observe single particle impacts when GNPs suspended in solution collide with a carbon fibre micro wire electrode held at an oxidising potential, resulting in current/time transient "spikes". The impacts are associated with two types of charge transfer: Faradaic due to oxidation of the 'tag' and capacitative due to disruption of the double layer. Analysis of the spikes suggests approximate monolayer coverage of 1-(biphen-4-yl)ferrocene on the GNP surfaces, with a surface coverage of (2.2 ± 0.3) × 10(-10) mol cm(-2). In contrast non-derivatised ferrocene does not exhibit any significant adsorption on the GNP material.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly sensitive and selective dopamine biosensor based on a phenylethynyl ferrocene/graphene nanocomposite modified electrode.

A new ferrocene derivative (1-[(4-amino) phenylethynyl]ferrocene, Fc-NH(2)) was synthesized for the first time. The ferrocene derivative molecule contained the phenylethynyl skeleton, ferrocene and amino groups with excellent electrochemical properties. The graphene/Fc-NH(2) nanocomposite was prepared by mixing graphene solution and Fc-NH(2) solution in one pot and the nanocomposite was utilize...

متن کامل

Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient.

Nano-impact chronoamperometric experiments are a powerful technique for simultaneously probing both the potential of zero charge (PZC) and the diffusion coefficient (D0) of graphene nanoplatelets (GNPs). The method provides an efficient general approach to material characterisation. Using nano-impact experiments, capacitative impacts can be seen for graphene nanoplatelets of 15 μm width and 6-8...

متن کامل

Small Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-Nanoplatelets

   The main purpose of the present investigation is to analyze more comprehensively the size-dependent nonlinear free vibration response of multilayer functionally graded graphene platelet-reinforced composite (GPLRC) nanobeams. As a consequence, both of the hardening stiffness and softening stiffness of size effect are taken into consideration by implementation of the nonlocal str...

متن کامل

Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, unde...

متن کامل

LbL: Layer-by-Layer; GOx: Glucose Oxidase; G-chitosan: Reduced Graphene Oxide Nanoplatelets Functionalized with Chitosan; GPSS: Reduced Graphene Oxide Nanoplatelets Functionalized with Poly(Styrenesulfonic Acid)

This work aims the functionalization of reduced graphene oxide nanoplatelets with chitosan (G-chitosan) and also with poly(styrenesulfonic acid) (GPSS), thus forming stable, dispersed aqueous solutions. G-chitosan and GPSS solutions allowed the layer-by-layer (LbL) film formation with glucose oxidase (GOx), establishing multilayered nanostructures with elevated control in thickness and morpholo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 141 9  شماره 

صفحات  -

تاریخ انتشار 2016